Choose any four out of five problems.
Please specify which four listed below to be graded: 1) \qquad ; 2) \qquad ; 3) \qquad ; 4) \qquad ;

Name : \qquad

E-Mail Address: \qquad

Problem 1: Derive the equations of motion for the mechanical systems shown below.

Problem 2: The mechanical system shown below is at rest initially. At $t=0$, a unit-step displacement input is applied to point A (i.e., $y(t)=u(t)$). Assuming that the system remains linear throughout the response period and is critically damped, determine the response $x(t)$ as well as the values of $x(0+)$ and $\dot{x}(0+)$.

Problem 3: Consider the mechanical vibratory system shown below. Assume that displacement x is measured from the equilibrium position in the absence of the sinusoidal excitation force. The initial conditions are $x(0)=0$ and $\dot{x}(0)=0$, and the input force $p(t)=P \sin \omega t$ is given at $t=0$. The numerical values are given as $m=2 \mathrm{~kg}, b=24 \mathrm{~N}-\mathrm{s} / \mathrm{m}, k=200 \mathrm{~N} / \mathrm{m}, P=5 \mathrm{~N}$ and $\omega=6$ $\mathrm{rad} / \mathrm{s}$. Obtain the complete solution $x(t)$.

Problem 4: Figure below shows the block diagram of the antenna control system of the solarcollector field. The signal $N(s)$ denotes the wind dust disturbance acted upon the antenna. The feedforward transfer function $G_{d}(s)$ is used to eliminate the effect of $N(s)$ on the output $Y(s)$. Find the transfer function $Y(s) /\left.N(s)\right|_{R=0}$. Determine the expression of $G_{d}(s)$ so that the effect of $N(s)$ is entirely eliminated (i.e., equivalently find $G_{d}(s)$ so that $\left.Y(s) /\left.N(s)\right|_{R=0}=0\right)$.

Problem 5: Apply the gain formula to the SFG shown below to find the transfer functions of $\frac{Y_{7}}{Y_{1}}$ and $\frac{Y_{7}}{Y_{4}}$.

